题目内容
已知函数,若方程有四个不同的解,,,,且,则的取值范围是( )
A. B. C. D.
(本小题满分13分)已知函数的部分图象如图所示.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调递增区间.
(本小题满分12分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构
为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600
人进行调查,并按年龄层次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方
图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”, [60,80]为“老年人”.
(1)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄;
(2)将上述人口分布的频率视为该城市在20-80年龄段的人口分布的概率.从该城市20-80年龄段市民中
随机抽取3人,记抽到“老年人”的人数为,求随机变量的分布列和数学期望.
(本小题满分14分)已知椭圆的右焦点为,且点在椭圆上,为坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围;
(Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.
记为区间的长度.已知函数,(),其值域为,则区间的长度的最小值是_____.
一个三棱锥的三视图如图所示,其中正视图和侧视图是全等的等腰三角形,则此三棱锥外接球的表面积为( )
A. B.C.4 D.
(本小题满分12分)如图,已知长方形中,,为的中点.将沿折起,使得平面平面.
(Ⅰ)求证:;
(Ⅱ)若点是线段上的一动点,问点E在何位置时,二面角的余弦值为.
如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,则该器皿的表面积是( )
A. B.
C. D.
给出下列四个结论:
①若组数据的散点都在上,则相关系数 ;
②由直线曲线及轴围成的图形的面积是 ;
③已知随机变量服从正态分布则 ;
④设回归直线方程为,当变量增加一个单位时,平均增加2个单位.
其中正确结论的个数为
A . B. C. D.