题目内容
16.已知函数f(x)=|x+a|+|x-2|.(1)当a=-4时,求不等式f(x)≥6的解集;
(2)若f(x)≤|x-3|的解集包含[0,1],求实数a的取值范围.
分析 (1)由条件利用绝对值的意义,求得不等式的解集.
(2)(2)原命题等价于f(x)≤|x-3|在[0,1]上恒成立,即-1-x≤a≤1-x在[0,1]上恒成立,由此求得a的范围.
解答 解:(1)当a=-4时,求不等式f(x)≥6,即|x-4|+|x-2|≥6,
而|x-4|+|x-2|表示数轴上的x对应点到4、2对应点的距离之和,
而0和6对应点到4、2对应点的距离之和正好等于6,故|x-4|+|x-2|≥6的解集为{x|x≤0,或x≥6}.
(2)原命题等价于f(x)≤|x-3|在[0,1]上恒成立,即|x+a|+2-x≤3-x在[0,1]上恒成立,
即-1≤x+a≤1,即-1-x≤a≤1-x在[0,1]上恒成立,即-1≤a≤0.
点评 本题主要考查绝对值的意义,函数的恒成立问题,体现了转化的数学思想,属于中档题.
练习册系列答案
相关题目
7.已知c<0,下列不等式中成立的一个是( )
| A. | c>($\frac{1}{2}$)c | B. | c>2c | C. | 2c<($\frac{1}{2}$)c | D. | 2c>($\frac{1}{2}$)c |
11.已知sin($\frac{π}{6}$-α)-cosα=$\frac{1}{3}$,则cos(2α+$\frac{π}{3}$)=( )
| A. | $\frac{5}{18}$ | B. | -$\frac{5}{18}$ | C. | $\frac{7}{9}$ | D. | -$\frac{7}{9}$ |
5.不等式3x2-7x+2<0的解集为( )
| A. | $\left\{{x\left|{\frac{1}{3}<x<2}\right.}\right\}$ | B. | $\left\{{x\left|{x<\frac{1}{3}或x>2}\right.}\right\}$ | C. | $\left\{{x\left|{-\frac{1}{2}<x<-\frac{1}{3}}\right.}\right\}$ | D. | {x|x>2} |