题目内容
设a,b,c∈R+,下列不等式不成立的个数是( )
(1)
≥ab (2)
+
≥2
(3)
+
≥2 (4)
+
≥a+b.
(1)
| a2+b2 |
| 2 |
| a |
| b |
| 4 | ab |
| b |
| a |
| a |
| b |
| b2 |
| a |
| a2 |
| b |
| A.0 | B.1 | C.2 | D.3 |
∵a,b∈R+,
∴
≥
=ab,(1)成立;
+
≥2
=2
,(2)成立;
+
≥2
=2,(3)成立;
∵
+a≥2
=2b,
+b≥2
=2a;
∴
+a+
+b≥2(a+b)?
+
≥a+b即(4)成立.
故上述四个不等式都成立.即不成立的有0个.
故选:A.
∴
| a2+b2 |
| 2 |
| 2ab |
| 2 |
| a |
| b |
|
| 4 | ab |
| b |
| a |
| a |
| b |
|
∵
| b2 |
| a |
|
| a2 |
| b |
|
∴
| b2 |
| a |
| a2 |
| b |
| b2 |
| a |
| a2 |
| b |
故上述四个不等式都成立.即不成立的有0个.
故选:A.
练习册系列答案
相关题目