题目内容
已知等差数列前三项为a,4,3a,前n项的和为sn,sk=2550.
(1)求a及k的值;
(2)求
+
+…+
.
(1)求a及k的值;
(2)求
| 1 |
| s1 |
| 1 |
| s2 |
| 1 |
| sn |
分析:(1)由a,4,3a为等差数列前三项,利用等差中项的概念求出a的值,则等差数列的公差可求,写出前k项和公式后代入sk=2550可求得k的值;
(2)求出等差数列的前n项和,直接利用裂项相消求
+
+…+
.
(2)求出等差数列的前n项和,直接利用裂项相消求
| 1 |
| s1 |
| 1 |
| s2 |
| 1 |
| sn |
解答:解:(1)设该等差数列为{an},则a1=a,a2=4,a3=3a,
由已知有a+3a=2×4,解得 a1=a=2,公差d=a2-a1=4-2=2,
将sk=2550代入公式sk=ka1+
•d,
得,2k+
×2=2550,解得:k=50,k=-51(舍去),
∴a=2,k=50;
(2)由 sn=n•a1+
•d,得 sn=2n+
×2=n(n+1),
∴
=
=
-
,
则
+
+…+
=
+
+…+
=(1-
)+(
-
)+…+(
-
)
=1-
=
.
由已知有a+3a=2×4,解得 a1=a=2,公差d=a2-a1=4-2=2,
将sk=2550代入公式sk=ka1+
| k(k-1) |
| 2 |
得,2k+
| k(k-1) |
| 2 |
∴a=2,k=50;
(2)由 sn=n•a1+
| n(n-1) |
| 2 |
| n(n-1) |
| 2 |
∴
| 1 |
| sn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
则
| 1 |
| s1 |
| 1 |
| s2 |
| 1 |
| sn |
=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
点评:本题考查了等差中项的概念,考查了等差数列的前n项和,考查了裂项相消法求数列的和,训练了学生的计算能力,是中档题题.
练习册系列答案
相关题目