题目内容
已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk=2550.(Ⅰ)求a及k的值;
(Ⅱ)求
| lim |
| n→∞ |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
分析:(Ⅰ)设该等差数列为{an},由题设条件可知首项a1=2,公差d=2.由此可以求得a=2,k=50.
(Ⅱ)由Sn=n•a1+
•d,得Sn=n(n+1),
+
+…+
=1-
,由此求得求
(
+
+…+
)的值.
(Ⅱ)由Sn=n•a1+
| n(n-1) |
| 2 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| n+1 |
| lim |
| n→∞ |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
解答:解:(Ⅰ)设该等差数列为{an},
则a1=a,a2=4,a3=3a,Sk=2550.
由已知有a+3a=2×4,
解得首项a1=a=2,
公差d=a2-a1=2.
代入公式Sk=k•a1+
•d
得k•2+
•2=2550
∴k2+k-2550=0
解得k=50,k=-51(舍去)
∴a=2,k=50;
(Ⅱ)由Sn=n•a1+
•d
得Sn=n(n+1),
+
+…+
=
+
+…+
=(
-
)+(
-
)+…+(
-
)
=1-
∴
(
+
+…+
)=
(1-
)=1.
则a1=a,a2=4,a3=3a,Sk=2550.
由已知有a+3a=2×4,
解得首项a1=a=2,
公差d=a2-a1=2.
代入公式Sk=k•a1+
| k(k-1) |
| 2 |
得k•2+
| k(k-1) |
| 2 |
∴k2+k-2550=0
解得k=50,k=-51(舍去)
∴a=2,k=50;
(Ⅱ)由Sn=n•a1+
| n(n-1) |
| 2 |
得Sn=n(n+1),
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
=(
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
∴
| lim |
| n→∞ |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| lim |
| n→∞ |
| 1 |
| n+1 |
点评:本题考查数列的极限,解题时要认真审题,仔细解答,避免不必要的错误.
练习册系列答案
相关题目