题目内容
投资生产A产品时,每生产100t需要资金200万元,需场地200m2,可以获利润300万元;投资生产B产品时,每生产100m需要资金300万元,需场地100m2,可以获利润200万元.现单位可以使用资金1400万元,场地900m2,请你用你所掌握的数学知识进行投资组合,使得单位获得最大利润,可能获得的最大利润为
1475
1475
万元.分析:设生产A产品x百吨,生产B产品y百米,利润为S百万元,先分析题意,找出相关量之间的不等关系,即x,y满足的约束条件,由约束条件画出可行域;要求应作怎样的组合投资,可使获利最大,即求可行域中的最优解,在线性规划的解答题中建议使用直线平移法求出最优解,即将目标函数看成是一条直线,分析目标函数Z与直线截距的关系,进而求出最优解.
解答:解:设生产A产品x百吨,生产B产品y百米,利润为S百万元,
则约束条件为:
,
目标函数为S=3x+2y,
作出可行域,
使目标函数为S=3x+2y取最大值的(x,y)是直线2x+3y=14与2x+y=9的交点(3.25,2.5),
此时S=3×3.25+2×2.5=14.75百万元=1475万元.
故答案为:1475.
则约束条件为:
|
目标函数为S=3x+2y,
作出可行域,
使目标函数为S=3x+2y取最大值的(x,y)是直线2x+3y=14与2x+y=9的交点(3.25,2.5),
此时S=3×3.25+2×2.5=14.75百万元=1475万元.
故答案为:1475.
点评:在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.
练习册系列答案
相关题目
投资生产A产品时,每生产100吨需要资金200万元,需场地200m2,可获利润300万元,投资生产B产品时,每生产100吨需资金300万元,需场地100m2,可获利润200万元,某单位有可使用资金1400万元,场地900 m2,问作怎样的组合可获利最多?最多利润是多少?(12分)
|
|
资金(万元) |
场地(m2) |
利润(万元) |
|
A产品(每百吨) |
200 |
200 |
300 |
|
B产品(每百吨) |
300 |
100 |
200 |