题目内容
命题“存在R,0”的否定是( )
A.不存在R, >0 B.存在R, 0
C.对任意的R, 0 D.对任意的R, >0
若实数满足,则的最大值为_________.
若变量满足,则的最大值为 ,.
直角的三个顶点都在给定的抛物线上,且斜边和轴平行,则斜边上的高的长度为 .
如图,已知椭圆C1:+y2=1,双曲线C2:—=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A、B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为 ( )
A. B.5 C. D.
已知矩阵的逆矩阵,求曲线在矩阵对应的交换作用下所得的曲线方程.
在△,角的对边分别为已知
(1)求的值;
(2)若求△的面积.
(14分)已知函数的图象经过坐标原点,且,
数列的前n项和
(1)求数列的通项公式;
(2)若数列满足求数列的前项和.
(本小题共13分)已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)证明:,,;
(Ⅲ)写出集合(b为常数且)中元素的个数(只需写出结论).