题目内容
若钝角△ABC的三边a,b,c满足a<b<c,三内角的度数成等差数列,则
的取值范围是______.
| ac |
| b2 |
由正弦定理可知
=
∵三内角的度数成等差数列,
∴3B=π,B=
,C=
-A
∴
=
=
•(-
)[cos
-cos(2C-
)=
•[
+
cos(2C-
)]
∵C=
-A<
∵C为钝角
∴
<C<
∴
<2C-
<
∴-
<cos(2C-
)<
∴
•[
+
cos(2C-
)]∈(0,
)
故答案为:(0,
)
| ac |
| b2 |
| sinAsinC |
| sin 2B |
∵三内角的度数成等差数列,
∴3B=π,B=
| π |
| 3 |
| 2π |
| 3 |
∴
| sinAsinC |
| sin 2B |
sin(
| ||
|
| 4 |
| 3 |
| 1 |
| 2 |
| 2π |
| 3 |
| 2π |
| 3 |
| 4 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 2π |
| 3 |
∵C=
| 2π |
| 3 |
| 2π |
| 3 |
∵C为钝角
∴
| π |
| 2 |
| 2π |
| 3 |
∴
| π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
∴-
| 1 |
| 2 |
| 2π |
| 3 |
| 1 |
| 2 |
∴
| 4 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 2π |
| 3 |
| 2 |
| 3 |
故答案为:(0,
| 2 |
| 3 |
练习册系列答案
相关题目