题目内容
已知曲线y=
x3+
,则过点P(2,4)的切线方程是
______.
| 1 |
| 3 |
| 4 |
| 3 |
∵P(2,4)在y=
x3+
上,又y′=x2,
∴斜率k=22=4.
∴所求直线方程为y-4=4(x-2),4x-y-4=0.
故答案为:4x-y-4=0
| 1 |
| 3 |
| 4 |
| 3 |
∴斜率k=22=4.
∴所求直线方程为y-4=4(x-2),4x-y-4=0.
故答案为:4x-y-4=0
练习册系列答案
相关题目
已知曲线y=
x3+
,则曲线在点P(2,4)处的切线方程为( )
| 1 |
| 3 |
| 4 |
| 3 |
| A、4x+y-12=0 |
| B、4x-y-4=0 |
| C、2x+y-8=0 |
| D、2x-y=0 |