题目内容
6.下列有关命题正确的是( )| A. | 若命题p:?x0∈R,x${\;}_{0}^{2}$-x0+1<0,则¬p:?x∉R,x2-x+1≥0 | |
| B. | 命题“若x=y,则cosx=cosy”的逆否命题为真命题 | |
| C. | 已知相关变量(x,y)满足线性回归方程$\widehat{y}$=2-3x,若变量x增加一个单位,则y平均增加3个单位 | |
| D. | 已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4-a)=0.68 |
分析 A对存在命题的否定,把存在改为任意,再否定结论即可;
B根据原命题与逆否命题为等价命题;
C根据线性回归方程判断即可;
D根据正态分布的概念可得.
解答 解:A若命题p:?x0∈R,x${\;}_{0}^{2}$-x0+1<0,则¬p应为?x∈R,x2-x+1≥0,故错误;
B命题“若x=y,则cosx=cosy”该命题为真命题,故逆否命题也为真命题,故正确;
C已知相关变量(x,y)满足线性回归方程$\widehat{y}$=2-3x,若变量x增加一个单位,则y平均减少3个单位,故错误;
D∵随机变量X服从正态分布N(2,σ2),μ=2,
∴p(x<a)=p(x>4-a)=0.32,故错误.
故选B.
点评 考查了命题的否定和等价关系,回归方程和正态分布的概念.
练习册系列答案
相关题目
14.
某校学生利用元旦节进行社会实践,在[25,55]岁的人群随机抽取n人,进行了一次“是否已养成垃圾分类习惯”的调查,得到如下统计表和各年龄段人数频率分布直方图:
(Ⅰ)补全频率分布直方图并求n、a、p的值;
(Ⅱ)从[40,50)岁年龄段的“已养成垃圾分类习惯的人”中采用分层抽样法抽取6人参加垃圾分类宣讲活动,其中选取2人作为领队,求选取的2名领队年龄都在[40,45)岁的概率.
| 组数 | 分组 | 已养成垃圾分类习惯的人数 | 占本组频率 |
| 第一组 | [25,30) | 120 | 0.6 |
| 第二组 | [30,35) | 195 | p |
| 第三组 | [35,40) | 100 | 0.5 |
| 第四组 | [40,45) | a | 0.4 |
| 第五组 | [45,50) | 30 | 0.3 |
| 第六祖 | [50,55] | 15 | 0.3 |
(Ⅱ)从[40,50)岁年龄段的“已养成垃圾分类习惯的人”中采用分层抽样法抽取6人参加垃圾分类宣讲活动,其中选取2人作为领队,求选取的2名领队年龄都在[40,45)岁的概率.
1.点A在z轴上,它到点(2$\sqrt{2}$,$\sqrt{5}$,1)的距离是$\sqrt{13}$,则点A的坐标是( )
| A. | (0,0,-1) | B. | (0,1,1) | C. | (0,0,1) | D. | (0,0,13) |
18.已知直线l⊥平面α,直线m?平面β,下列命题正确的是( )
| A. | 若α⊥β,则l∥m | B. | 若l⊥m,则α∥β | C. | 若l∥β,则m⊥α | D. | 若α∥β,则l⊥m |
15.已知表面积为24π的球外接于三棱锥S-ABC,且∠BAC=$\frac{π}{3}$,BC=4,则三棱锥S-ABC的体积最大值为( )
| A. | $\frac{8\sqrt{2}}{3}$ | B. | $\frac{16\sqrt{2}}{3}$ | C. | $\frac{16}{3}$ | D. | $\frac{32}{3}$ |