题目内容
设函数f(x)=logax(a>0,a≠1),若f(x1x2…x2010)=8,则f(
)+f(
)+…+f(
)的值等于______.
| x | 21 |
| x | 22 |
| x | 22010 |
:∵f(x)=logax(a>0,a≠1),且f(x1x2…x2010)=8,
∴f(x12)+f(x22)+…+f(x20102)
=logax12+logax22+…+logax20102
=loga(x1x2…x2010)2
=2f(x1x2…x2010)=2×8=16.
故答案为 16.
∴f(x12)+f(x22)+…+f(x20102)
=logax12+logax22+…+logax20102
=loga(x1x2…x2010)2
=2f(x1x2…x2010)=2×8=16.
故答案为 16.
练习册系列答案
相关题目