题目内容

f1(x)=,fn+1(x)=f1fn(x)],an=,其中nN*.

(1)求数列{an}的通项公式;

(2)若T2n =a1+2a2+3a3+…+2na2n,Qn=,其中nN*.

试比较9T2nQn的大小,并说明理由.

解:(1)f1(0)=2,a1=,fn+1(0)=f1fn(0)]=,                                            ?

an+1===-·=-an.?

∴{an}是首项为,公比为-的等比数列.?

an=·(-)n-1.                                                                                ?

(2)T2n=a1+2a2+3a3+…+2na2n,-T2n=a2+2a3+…+(2n-1)a2n+2na2n+1.?

两式相减得T2n=(a1+a2+a2n)-2n··(-)2n                                                                               ?

=-·(-)2n+·(-)2n-1,?

T2n=(1-).                                                                                 ?

∴9T2n=1-,Qn=,即比较1-=的大小.?

n≥1,∴即比较(2n+1)2与22n的大小.?

n=1时,22n=4<(2n+1)2=9;?

n=2时,22n=16<(2n+1)2=25;                                                                   ?

n≥3时,22n=[(1+1)n2=(C0n+C1n+…+Cnn)2>[1+n+2>(1+n+n)2=(2n+1)2.

?

故当n=1或2时,9T2nQn;?

n≥3时,9T2nQn.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网