题目内容

下列命题正确的个数是(  )
①命题“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;
③x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量
a
b
的夹角是钝角”的充分必要条件是“
a
b
<0”.
A、1B、2C、3D、4
考点:命题的真假判断与应用
专题:简易逻辑
分析:(1)根据特称命题的否定是全称命题来判断是否正确;
(2)化简三角函数,利用三角函数的最小正周期判断;
(3)用特例法验证(3)是否正确;
(4)根据向量夹角为π时,向量的数量积小于0,来判断(4)是否正确.
解答: 解:(1)根据特称命题的否定是全称命题,
∴(1)正确;
(2)f(x)=cos2ax-sin2ax=cos2ax,最小正周期是
2|a|
=π⇒a=±1,
∴(2)正确;
(3)例a=2时,x2+2x≥2x在x∈[1,2]上恒成立,而(x2+2x)min=3<2xmax=4,
∴(3)不正确;
(4)∵
a
b
=|
a
||
b
|cosθ
,当θ=π时,
a
b
<0.
∴(4)错误.
∴正确的命题是(1)(2).
故选:B
点评:本题借助考查命题的真假判断,考查命题的否定、向量的数量积公式、三角函数的最小正周期及恒成立问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网