题目内容

已知曲线x2+y2-4x-2y-k=0表示的图象为圆.
(1)若k=15,求过该曲线与直线x-2y+5=0的交点,且面积最小的圆的方程.
(2)若该圆关于直线x+y-4=0的对称圆与直线6x+8y-59=0相切,求实数k的值.
(1)设所求圆的圆心坐标为A(x0,y0
当k=15时,代入x2+y2-4x-2y-k=0,化简得(x-2)2+(y-1)2=20,
∴圆心B(2,1),到直线x-2y+5=0的距离为
|2-2+5|
1+4
=
5

当相交弦为所求圆的直径时,圆的面积最小,即圆心A在直线x-2y+5=0上;
x°-2y°+5=0
y°-1
x°-2
=-2
,解得
x°=1
y°=3
r=
(2
5
)
2
-
5
2
=
15

∴所求圆的方程为:(x-1)2+(y-3)2=15
(2)设圆心B(2,1)关于y=-x+4的对称圆的圆心为C(x,y),
y+1
2
=-
x+2
2
+4
y-1
x-2
=1
,解得x=3,y=2;则 C(3,2)
∵对称圆C与直线6x+8y-59=0相切,
∴点(3,2)到6x+8y-59=0的距离为
|6×3+8×2-59|
62+82
=
5
2

r=
5
2

由x2+y2-4x-2y-k=0得
16+4-4(-k)
2
=
5
2

解得,k=
5
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网