题目内容

18.定义取整函数[x],它表示x的整数部分,即[x]是不超过x的最大整数,例如[2]=2,[3.1]=3,[-2.6]=-3等,设函数f(x)=$\frac{{2016}^{x}}{1{+2016}^{x}}$,x>0,则函数g(x)=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]的值域为{-1,0}.

分析 令t(x)=$\frac{201{6}^{x}-1}{2(1+201{6}^{x})}$,判断其奇偶性,并求得t(x)=$\frac{1}{2}-\frac{1}{201{6}^{x}+1}$∈($-\frac{1}{2}$,$\frac{1}{2}$),然后分t(x)=0和t(x)≠0求解函数值域.

解答 解:∵f(x)=$\frac{201{6}^{x}}{1+201{6}^{x}}$,∴f(x)-$\frac{1}{2}$=$\frac{201{6}^{x}}{1+201{6}^{x}}$$-\frac{1}{2}$=$\frac{201{6}^{x}-1}{2(1+201{6}^{x})}$,
令t(x)=$\frac{201{6}^{x}-1}{2(1+201{6}^{x})}$,则t(-x)=$\frac{201{6}^{-x}-1}{2(1+201{6}^{-x})}=\frac{1-201{6}^{x}}{2(1+201{6}^{x})}$=-t(x),
即t(x)为奇函数,又t(x)=$\frac{1}{2}-\frac{1}{201{6}^{x}+1}$∈($-\frac{1}{2}$,$\frac{1}{2}$),
当t(x)=0时,[t(x)]+[t(-x)]=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]=0;
当t(x)≠0时,不妨设t(x)>0,则[t(x)]=0,[t(-x)]=-1,
则[t(x)]+[t(-x)]=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]=-1.
∴函数g(x)=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]的值域为{-1,0}.
故答案为:{-1,0}.

点评 本题考查函数值域的求法,考查函数奇偶性的性质,考查逻辑思维能力和推理运算能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网