题目内容
已知
cosx+sinx=
,则cos(
+x)=
| 3 |
| 2 |
| 3 |
| 5π |
| 6 |
-
| 1 |
| 3 |
-
.| 1 |
| 3 |
分析:
cosx+sinx=
⇒sin(x+
)=
,
+x=
+(x+
),利用诱导公式即可求得cos(
+x).
| 3 |
| 2 |
| 3 |
| π |
| 3 |
| 1 |
| 3 |
| 5π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| 5π |
| 6 |
解答:解:∵
cosx+sinx=
,
∴2(
cosx+
sinx)=
,
∴sin(x+
)=
,
又
+x=
+(x+
),
∴cos(
+x)
=cos[
+(x+
)]
=-sin(x+
)
=-
.
故答案为:-
.
| 3 |
| 2 |
| 3 |
∴2(
| ||
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
∴sin(x+
| π |
| 3 |
| 1 |
| 3 |
又
| 5π |
| 6 |
| π |
| 2 |
| π |
| 3 |
∴cos(
| 5π |
| 6 |
=cos[
| π |
| 2 |
| π |
| 3 |
=-sin(x+
| π |
| 3 |
=-
| 1 |
| 3 |
故答案为:-
| 1 |
| 3 |
点评:本题考查两角和与差的正弦函数,着重考查辅助角公式与诱导公式的应用,属于中档题.
练习册系列答案
相关题目