题目内容
无穷等比数列1,
,
,
,…各项的和等于( )
| ||
| 2 |
| 1 |
| 2 |
| ||
| 4 |
分析:由题意可得等比数列1,
,
,
,的首项为1,公比q=
,而S=
Sn=
=
代入可求
| ||
| 2 |
| 1 |
| 2 |
| ||
| 4 |
| ||
| 2 |
| lim |
| n→∞ |
| lim |
| n→∞ |
| a1(1-qn) |
| 1-q |
| a1 |
| 1-q |
解答:解:由题意可得等比数列1,
,
,
,的首项为1,公比q=
S=
Sn=
=
=
=2+
故选:B
| ||
| 2 |
| 1 |
| 2 |
| ||
| 4 |
| ||
| 2 |
S=
| lim |
| n→∞ |
| lim |
| n→∞ |
| a1(1-qn) |
| 1-q |
| a1 |
| 1-q |
| 1 | ||||
1-
|
| 2 |
故选:B
点评:本题主要考查了无穷等比数列的各项和的求解,属于基础性试题.
练习册系列答案
相关题目