题目内容
如图,F1、F2是椭圆C1:
+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是( )
A.
B.![]()
C.
D.![]()
![]()
D
[解析] 不妨设双曲线方程为
-
=1.
由题意知|BF1|-|BF2|=2a⇒|BF1|2+|BF2|2-2|BF1|·|BF2|=4a2,①
并由勾股定理得|BF1|2+|BF2|2=4c2=12,②
由①②知12-4a2=2|BF1|·|BF2|,
∴|BF1|·|BF2|=6-2a2.下面求|BF1|·|BF2|的值.
在椭圆中|BF1|+|BF2|=4,故|BF1|2+|BF2|2+2|BF1|·|BF2|=16,
又由②知|BF1|2+|BF2|2=4c2=12,
∴|BF1|·|BF2|=2,因此有c2-a2=1,
∵c2=3,∴a2=2,∴C2的离心率e=
=
.
练习册系列答案
相关题目