题目内容
20.设数列{an}的前n项和为Sn,且(n+1)Sn=(n-1)an+1+2n+2,n∈N*,a2=8.(1)求a1,a3;
(2)求数列{an}的通项公式an;
(3)设bn=$\frac{{n}^{2}}{{a}_{n}}$-$\frac{{2}^{2n+5}}{{a}_{n+1}{a}_{n+2}}$,数列{bn}的前n和为Tn.
①求Tn;
②求正整数k,使得对任意n∈N*,均有Tn≤TK.
分析 (1)通过(n+1)Sn=(n-1)an+1+2n+2及a2=8代入计算即得结论;
(2)通过对(n+1)Sn=(n-1)an+1+2n+2变形可知Sn=$\frac{n-1}{n+1}$•an+2,利用an=Sn-Sn-1计算、整理可知$\frac{{a}_{n+1}}{{a}_{n}}$=2•$\frac{n+1}{n}$(n≥2),利用累乘法计算可知an=n•2n(n≥2),进而可得结论;
(3)①通过(2)、裂项可知bn=$\frac{n}{{2}^{n}}$-4($\frac{1}{n+1}$-$\frac{1}{n+2}$),利用错位相减法计算可知Pn=1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+3•$\frac{1}{{2}^{3}}$+…+n•$\frac{1}{{2}^{n}}$=2-(n+2)•$\frac{1}{{2}^{n}}$,利用并项法相加计算可知Qn=4($\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$)=2-$\frac{4}{n+2}$,利用Tn=Pn-Qn计算即得结论;②通过①可知Tn=$\frac{4}{n+2}$-(n+2)•$\frac{1}{{2}^{n}}$,通过计算可知当n≤5时Tn<T6、当n≥7时,Tn<T6,进而可得结论.
解答 解:(1)依题意,当n=1时,2a1=2+2,即a1=2,
当n=2时,3S2=a3+6,
又∵a1=2,a2=8,
∴a3=3(a1+a2)=24;
(2)∵(n+1)Sn=(n-1)an+1+2n+2,
∴Sn=$\frac{n-1}{n+1}$•an+2,
∴an=Sn-Sn-1=($\frac{n-1}{n+1}$•an+2)-($\frac{n-2}{n}$•an-1+2)=$\frac{n-1}{n+1}$•an-$\frac{n-2}{n}$•an-1,
整理得:$\frac{{a}_{n+1}}{{a}_{n}}$=2•$\frac{n+1}{n}$(n≥2),
∴$\frac{{a}_{n}}{{a}_{n-1}}=2•\frac{n}{n-1}$,$\frac{{a}_{n-1}}{{a}_{n-2}}=2•\frac{n-1}{n-2}$,…,$\frac{{a}_{3}}{{a}_{2}}=2•\frac{3}{2}$,
累乘得:$\frac{{a}_{n}}{{a}_{2}}$=2n-2•$\frac{n}{2}$,
又∵a2=8,
∴an=n•2n(n≥2),
又∵a1=2满足上式,
∴数列{an}的通项公式an=n•2n;
(3)①由(2)可知bn=$\frac{{n}^{2}}{{a}_{n}}$-$\frac{{2}^{2n+5}}{{a}_{n+1}{a}_{n+2}}$=$\frac{{n}^{2}}{n•{2}^{n}}$-$\frac{{2}^{2n+5}}{(n+1)(n+2)•{2}^{n+1+n+2}}$=$\frac{n}{{2}^{n}}$-4($\frac{1}{n+1}$-$\frac{1}{n+2}$),
记Pn=1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+3•$\frac{1}{{2}^{3}}$+…+n•$\frac{1}{{2}^{n}}$,则$\frac{1}{2}$Pn=1•$\frac{1}{{2}^{2}}$+2•$\frac{1}{{2}^{3}}$+…+(n-1)•$\frac{1}{{2}^{n}}$+n•$\frac{1}{{2}^{n+1}}$,
两式相减得:$\frac{1}{2}$Pn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$,
∴Pn=1•$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-$n•\frac{1}{{2}^{n}}$=2-(n+2)•$\frac{1}{{2}^{n}}$,
记Qn=4($\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$)=4($\frac{1}{2}$-$\frac{1}{n+2}$)=2-$\frac{4}{n+2}$,
∴数列{bn}的前n和为Tn=Pn-Qn=[2-(n+2)•$\frac{1}{{2}^{n}}$]-(2-$\frac{4}{n+2}$)=$\frac{4}{n+2}$-(n+2)•$\frac{1}{{2}^{n}}$;
②由①可知Tn=$\frac{4}{n+2}$-(n+2)•$\frac{1}{{2}^{n}}$,
∴T1=$\frac{4}{3}$-3•$\frac{1}{2}$=-$\frac{1}{6}$,
T2=1-4•$\frac{1}{4}$=0,
T3=$\frac{4}{5}$-5•$\frac{1}{8}$=$\frac{7}{40}$,
T4=$\frac{4}{6}$-6•$\frac{1}{16}$=$\frac{7}{24}$,
T5=$\frac{4}{7}$-7•$\frac{1}{32}$=$\frac{79}{224}$,
T6=$\frac{4}{8}$-8•$\frac{1}{64}$=$\frac{3}{8}$,
T7=$\frac{4}{9}$-9•$\frac{1}{128}$=$\frac{431}{1152}$,
易知当n≥7时,Tn≤$\frac{431}{1152}$<T6,
又∵当n≤5时Tn<T6,
∴k=6.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
| A. | $\frac{3\sqrt{17}}{2}$ | B. | 2$\sqrt{10}$ | C. | $\frac{13}{2}$ | D. | 3$\sqrt{10}$ |
| A. | y=2x+1 | B. | y=2x+3 | C. | y=x+2 | D. | y=3x+2 |