题目内容

求sin220°+cos280°+sin20°cos80°的值.

思路分析:可综合利用三角变换直接求值,也可以构造该式子的对偶式,利用该式和它的对偶式的和与差求值.

解法一:原式=[sin(20°+80°)+sin(20°-80°)]

=1-(cos40°-cos160°)+sin100°-sin60°

=1+sin·sin+sin100°-

=1-sin100°+sin100°-=.

解法二:令M=sin220°+cos280°+sin20°cos80°,则其对偶式为N=cos220°+sin280°+

cos20°sin80°.

M+N=(sin220°+cos220°)+(cos280°+sin280°)+(sin20°cos80°+cos20°sin80°)

=1+1+sin(20°+80°)=2+sin100°,                                                              ①

M-N=(sin220°-cos220°)+(cos280°-sin280°)+(sin20°cos80°-cos20°sin80°)

=-cos40°+cos160°+sin(20°-80°)

=cos160°-cos40°-

=-2sinsin-

=-sin100°-,                                                                                                    ②

由①+②,得2M=,∴M=.

∴sin220°+cos280°+sin20°cos80°=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网