题目内容
求sin220°+cos280°+
思路分析:可综合利用三角变换直接求值,也可以构造该式子的对偶式,利用该式和它的对偶式的和与差求值.
解法一:原式=
[sin(20°+80°)+sin(20°-80°)]
=1-
(cos40°-cos160°)+
sin100°-
sin60°
=1+sin
·sin
+
sin100°-![]()
=1-
sin100°+
sin100°-
=
.
解法二:令M=sin220°+cos280°+
sin20°cos80°,则其对偶式为N=cos220°+sin280°+
cos20°sin80°.
∵M+N=(sin220°+cos220°)+(cos280°+sin280°)+
(sin20°cos80°+cos20°sin80°)
=1+1+
sin(20°+80°)=2+
sin100°, ①
M-N=(sin220°-cos220°)+(cos280°-sin280°)+
(sin20°cos80°-cos20°sin80°)
=-cos40°+cos160°+
sin(20°-80°)
=cos160°-cos40°-![]()
=-2sin
sin
-![]()
=-
sin100°-
, ②
由①+②,得2M=
,∴M=
.
∴sin220°+cos280°+
sin20°cos80°=
.
练习册系列答案
相关题目