题目内容

函数f(x+2)=
tanx,(x≥0)
lg(-x),(x<0)
,则f(
π
4
+2)•f(-98)
=
2
2
分析:求分段函数的函数值,先判断出 x=
π
4
,x=-100
所属于的范围,将它们代入各段的解析式求出值.
解答:解:∵f(x+2)=
tanx,(x≥0)
lg(-x),(x<0)

f(
π
4
+2)•f(-98)
=tan
π
4
•lg100
=1×2=2
故答案为:2
点评:解决分段函数的问题,应该分段解决,然后再将各段的结果求并集,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网