题目内容

15.在△ABC中,内角A,B,C所对的边分别为a,b,c,若a2+b2=2a+6b-10,且c2=a2+b2+ab,则△ABC的面积为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{3\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{4}$D.$\frac{3\sqrt{3}}{4}$

分析 由a2+b2=2a+6b-10,移项,配方可得(a-1)2+(b-3)2=0,解得:a=1,b=3,又c2=a2+b2+ab及余弦定理可得cosC=-$\frac{1}{2}$,结合C∈(0,π),可得sinC=$\frac{\sqrt{3}}{2}$,利用三角形面积公式即可得解.

解答 解:∵a2+b2=2a+6b-10,
∴(a-1)2+(b-3)2=0,解得:a=1,b=3,
又∵c2=a2+b2+ab,即:a2+b2-c2=-ab,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=-$\frac{1}{2}$,
∴结合C∈(0,π),可得:C=$\frac{2π}{3}$,sinC=$\frac{\sqrt{3}}{2}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×$1×3×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$.
故选:D.

点评 本题主要考查了余弦定理,特殊角的三角函数值,三角形面积公式在解三角形中的应用,考查了转化思想和计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网