题目内容
已知在数列{an}中,a1=1,a2=3,an+2=3an+1-2an.
(1)求证:{an+1-an}是等比数列.
(2)求{an}的通项公式.
(3)求证:
-
<
+
+…+
<
(n∈N*).
(1)求证:{an+1-an}是等比数列.
(2)求{an}的通项公式.
(3)求证:
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
考点:数列与不等式的综合,等比关系的确定
专题:等差数列与等比数列,不等式的解法及应用
分析:(1)利用等比数列的定义,构造
=q≠0进行证明.
(2)利用(1)可先求an+1-an=2n,利用叠加法可得an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,从而可求an
(3)由
=
=
<
证明不等式右边,由
=
=
-
=
-
≥
-
.
证明不等式左边.
| an+2-an+1 |
| an+1-an |
(2)利用(1)可先求an+1-an=2n,利用叠加法可得an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,从而可求an
(3)由
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 2k-1 | ||
2(2k-
|
| 1 |
| 2 |
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 1 |
| 2 |
| 1 |
| 2(2k+1-1) |
| 1 |
| 2 |
| 1 |
| 3•2k+2k-2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
解答:
(1)证明:∵an+2=3an+1-2an,
∴an+2-an+1=2(an+1-an),
∵a1=1,a2=3,
∴a2-a1=2≠0.
∴{an+1-an}是以2为首项,2为公比的等比数列;
(2)解:由(1)得an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+1=2n-1;
(3)证明:∵
=
=
<
,k=1,2,…,n.
∴
+
+…+
<
.
∵
=
=
-
=
-
≥
-
.
,k=1,2,…,n.
∴
+
+…+
≥
-
(
+
+…+
)
=
-
(1-
)>
-
,
∴
-
<
+
+…+
.
综上,
-
<
+
+…+
<
(n∈N*).
∴an+2-an+1=2(an+1-an),
∵a1=1,a2=3,
∴a2-a1=2≠0.
∴{an+1-an}是以2为首项,2为公比的等比数列;
(2)解:由(1)得an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+1=2n-1;
(3)证明:∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 2k-1 | ||
2(2k-
|
| 1 |
| 2 |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 1 |
| 2 |
| 1 |
| 2(2k+1-1) |
| 1 |
| 2 |
| 1 |
| 3•2k+2k-2 |
≥
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
=
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
∴
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
综上,
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
点评:本题主要考查数列、不等式等基本知识的综合运用,考查化归的数学思想方法在解题中的运用,训练了放缩法证明数列不等式,考查综合解题能力.题是数列与不等式综合题,属压轴题.
练习册系列答案
相关题目
已知直线a与直线b是异面直线,过空间一定点P(点P不在直线a与直线b上)作与直线a、直线b都平行的平面有( )
| A、有且只有一个 |
| B、不存在或者有一个 |
| C、有无数个 |
| D、恰有两个 |
设函数f(x)=|lgx|,若f(a)=f(b)(0<a<b),则
+
( )
| 1 |
| a |
| 2 |
| b |
| A、有最小值3 | ||
| B、无最小值 | ||
C、有最小值2
| ||
| D、有最大值 |