题目内容
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,
)的部分图象如图所示. ![]()
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间和对称中心.
【答案】
(1)解:显然A=2,又图象过(0,1)点,∴f(0)=1,
∴sin φ=
,∵|φ|<
,∴φ=
;
由图象结合“五点法”可知ω
+
=2π,得ω=2.
所以所求的函数的解析式为:f(x)=2sin(2x+
).
(2)解:﹣
+2kπ≤2x+
≤
+2kπ,可得函数f(x)的单调递增区间[﹣
+kπ,
+kπ](k∈Z);
令
,
,对称中心 ![]()
【解析】(1)利用最值求出A,利用周期求出ω,利用特殊点,求出φ,即可求函数f(x)的解析式;(2)利用正弦函数的性质,求函数f(x)的单调递增区间和对称中心.
【考点精析】本题主要考查了正弦函数的单调性的相关知识点,需要掌握正弦函数的单调性:在![]()
上是增函数;在![]()
上是减函数才能正确解答此题.
【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?
【题目】兰州一中在世界读书日期间开展了“书香校园”系列读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”。
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 |
![]()
(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
(2)利用分层抽样从这100名学生的“读书迷”中抽取8名进行集训,从中选派2名参加兰州市读书知识比赛,求至少有一名男生参加比赛的概率。
附: ![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |