题目内容
已知A(3,0),B(0,3),C(cosα,sinα),O为原点;
(1)若
∥
,求tanα;
(2)若|
+
|=
,求
与
的夹角.
(1)若
| OC |
| AB |
(2)若|
| OA |
| OC |
| 13 |
| OA |
| OC |
分析:(1)由
∥
,可得3cosα+3sinα=0,整理代入可求tanα=
(2)设
与
的夹角为β,由|
+
|=
可得
2+2
•
+
2=13,代入可求β
| OC |
| AB |
| sinα |
| cosα |
(2)设
| OA |
| OC |
| OA |
| OC |
| 13 |
| OA |
| OA |
| OC |
| OC |
解答:解:(1)由题意可得
=(cosα,sinα),
=(-3,3)
∵
∥
,
∴3cosα+3sinα=0即sinα=-cosα
tanα=
=-1
(2)设
与
的夹角为β
∵|
+
|=
,|
|=3,|
|=1,
•
=3×1cosβ=3cosβ
∴
2+2
•
+
2=13
即9+6cosβ+1=13
∴cosβ=
∵0≤β≤π
∴β=
即
与
的夹角为
| OC |
| AB |
∵
| OC |
| AB |
∴3cosα+3sinα=0即sinα=-cosα
tanα=
| sinα |
| cosα |
(2)设
| OA |
| OC |
∵|
| OA |
| OC |
| 13 |
| OA |
| OC |
| OA |
| OC |
∴
| OA |
| OA |
| OC |
| OC |
即9+6cosβ+1=13
∴cosβ=
| 1 |
| 2 |
∵0≤β≤π
∴β=
| π |
| 3 |
即
| OA |
| OC |
| π |
| 3 |
点评:本题主要考查了向量平行的坐标表示、向量的数量积的性质的应用,属于向量知识的简单应用.
练习册系列答案
相关题目