题目内容

已知A(3,0),B(0,3),C(cosα,sinα),O为原点;
(1)若
OC
AB
,求tanα;
(2)若|
OA
+
OC
|=
13
,求
OA
OC
的夹角.
分析:(1)由
OC
AB
,可得3cosα+3sinα=0,整理代入可求tanα=
sinα
cosα

(2)设
OA
OC
的夹角为β,由|
OA
+
OC
|=
13
可得
OA
2
+2
OA
OC
+
OC
2
=13,代入可求β
解答:解:(1)由题意可得
OC
=(cosα,sinα)
AB
=(-3,3)

OC
AB

∴3cosα+3sinα=0即sinα=-cosα
tanα=
sinα
cosα
=-1
(2)设
OA
OC
的夹角为β
|
OA
+
OC
|=
13
,|
OA
|=3,|
OC
|=1
OA
OC
=3×1cosβ=3cosβ
OA
2
+2
OA
OC
+
OC
2
=13
即9+6cosβ+1=13
cosβ=
1
2

∵0≤β≤π
β=
π
3

OA
OC
的夹角为
π
3
点评:本题主要考查了向量平行的坐标表示、向量的数量积的性质的应用,属于向量知识的简单应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网