题目内容

AB
=3
e1
CD
=-5
e1
,且
AD
CB
的模相等,则四边形ABCD是
 
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:利用向量共线定理,可得
AB
=-
3
5
CD
,结合
AD
CB
的模相等,即可得到四边形ABCD的形状.
解答: 解:∵
AB
=3
e1
CD
=-5
e1

AB
=-
3
5
CD

∴AB∥CD,且|AB|≠|CD|.
∴四边形ABCD是梯形
AD
CB
的模相等,
∴四边形ABCD是等腰梯形
故答案为:等腰梯形
点评:本题考查向量共线定理的运用,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网