题目内容

在△ABC中,若(cosA+sinA)(cosB+sinB)=2,则角C=______.
∵(cosA+sinA)(cosB+sinB)=2,
∴cosAcosB+sinAsinB+cosAsinB+sinAcosB=2,
即cos(A-B)+sin(A+B)=2,
∵cos(A-B)≤1,sin(A+B)≤1,
∴cos(A-B)+sin(A+B)=2?cos(A-B)=1且sin(A+B)=1,
?A-B=0且A+B=90°.
则△ABC是等腰直角三角形.
故答案为:45°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网