题目内容
【题目】已知直线
的参数方程为
(
为参数),以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴建立极坐标系,椭圆
的极坐标方程为
.
(1)求直线
的普通方程(写成一般式)和椭圆
的直角坐标方程(写成标准方程);
(2)若直线
与椭圆
相交于
,
两点,且与
轴相交于点
,求
的值.
【答案】(1)
,
;(2)
.
【解析】
(1)直线的参数方程消去参数
,即得直线
的普通方程,将
,
代入极坐标方程,即得椭圆
的直角坐标方程;
(2)写出直线
的标准参数方程,代入椭圆
的普通方程,得到点
,
对应的参数值分别为
,
,由参数的几何意义,
即得解.
(1)由
(
为参数)消去参数
,
即得直线
的普通方程为
,
将
,
代入
,
得
,
即椭圆
的直角坐标方程为
;
(2)由(1)知直线
:
与
轴的交点
的坐标为
,直线
的标准
参数方程为:
(
为参数),
代入
,化得
,
设点
,
对应的参数值分别为
,
,
则
,
,且
,
异号,所以
![]()
![]()
【题目】某中学为了解高二年级中华传统文化经典阅读的整体情况,从高二年级随机抽取10名学生进行了两轮测试,并把两轮测试成绩的平均分作为该名学生的考核成绩.记录的数据如下:
1号 | 2号 | 3号 | 4号 | 5号 | 6号 | 7号 | 8号 | 9号 | 10号 | |
第一轮测试成绩 | 96 | 89 | 88 | 88 | 92 | 90 | 87 | 90 | 92 | 90 |
第二轮测试成绩 | 90 | 90 | 90 | 88 | 88 | 87 | 96 | 92 | 89 | 92 |
(Ⅰ)从该校高二年级随机选取一名学生,试估计这名学生考核成绩大于90 分的概率;
(Ⅱ)从考核成绩大于90分的学生中再随机抽取两名同学,求这两名同学两轮测试成绩均大于等于90分的概率;
(Ⅲ)记抽取的10名学生第一轮测试的平均数和方差分别为
,
,考核成绩的平均数和方差分别为
,
,试比较
与
,
与
的大小.(只需写出结论)
【题目】某城市美团外卖配送员底薪是每月1800元,设每月配送单数为X,若
,每单提成3元,若
,每单提成4元,若
,每单提成4.5元,饿了么外卖配送员底薪是每月2100元,设每月配送单数为Y,若
,每单提成3元,若
,每单提成4元,小想在美团外卖和饿了么外卖之间选择一份配送员工作,他随机调查了美团外卖配送员甲和饿了么外卖配送员乙在2019年4月份(30天)的送餐量数据,如下表:
表1:美团外卖配送员甲送餐量统计
日送餐量x(单) | 13 | 14 | 16 | 17 | 18 | 20 |
天数 | 2 | 6 | 12 | 6 | 2 | 2 |
表2:饿了么外卖配送员乙送餐量统计
日送餐量x(单) | 11 | 13 | 14 | 15 | 16 | 18 |
天数 | 4 | 5 | 12 | 3 | 5 | 1 |
(1)设美团外卖配送员月工资为
,饿了么外卖配送员月工资为
,当
时,比较
与
的大小关系
(2)将4月份的日送餐量的频率视为日送餐量的概率
(ⅰ)计算外卖配送员甲和乙每日送餐量的数学期望E(X)和E(Y)
(ⅱ)请利用所学的统计学知识为小王作出选择,并说明理由.