题目内容
在数列{an}中,a1=2,nan+1=(n+1)an+2(n∈N*),则a10为( )
| A、34 | B、36 | C、38 | D、40 |
分析:先根据地推关系得到
-
=
=2(
-
),再由
=
-
+
-
+…+
-
+a1可求出a10的值.
| an+1 |
| n+1 |
| an |
| n |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| a10 |
| 10 |
| a10 |
| 10 |
| a9 |
| 9 |
| a9 |
| 9 |
| a8 |
| 8 |
| a2 |
| 2 |
| a1 |
| 1 |
解答:解:∵nan+1=(n+1)an+2∴
-
=
=2(
-
)
∴
=
-
+
-
+…+
-
+a1
=2[(
-
)+(
-
)+…+(1-
)]+2=
a10=38
故选C.
| an+1 |
| n+1 |
| an |
| n |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| a10 |
| 10 |
| a10 |
| 10 |
| a9 |
| 9 |
| a9 |
| 9 |
| a8 |
| 8 |
| a2 |
| 2 |
| a1 |
| 1 |
=2[(
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| 8 |
| 1 |
| 9 |
| 1 |
| 2 |
| 38 |
| 10 |
a10=38
故选C.
点评:本题主要考查数列的递推关系式,考查综合观察和转化能力.
练习册系列答案
相关题目