题目内容
根据程序设定,机器人在平面上能完成下列动作:先从原点O沿正东偏北α(
)方向行走一段时间后,再向正北方向行走一段时间,但α的大小以及何时改变方向不定.如图.假定机器人行走速度为10米/分钟,设机器人行走2分钟时的可能落点区域为S,则S的面积(单位:平方米)等于
- A.100π
- B.100π-200
- C.400-100π
- D.200
B
分析:设改变方向的点为M,过M作x轴的垂线,垂足为N,根据速度和时间求出|OM|+|PM|的长,在△OPM中然后根据三角形的两边之和大于第三边列出一个不等式,然后在△OMN中,根据两边之和大于第三边列出另外一个不等式,然后再根据x大于等于0,y大于等于0,在平面直角坐标系中画出相应的平面区域为一个弓形,如图所示,利用四分之一圆的面积减去等腰直角三角形的面积即可求出弓形的面积.
解答:
解:设改变方向的点为M,
依题意|OM|+|MP|=10×2=20米,
△OPM中,|OM|+|MP|≥|OP|(当O、M、P共线时“=”成立),
∴|OP|≤20,即x2+y2≤400,
又△OMN中,|OM|≤|ON|+|MN|(当O、M、N共线时“=”成立),
∴|OM|+|MP|≤|ON|+|MN|+|MP|=x+y,
∴x+y≥20
∴区域S:
为弓形,
则面积为
π202-
×20×20=100π-200.
故选B.
点评:此题考查学生会进行简单的线性规划,考查了数形结合的数学思想,是一道综合题.
分析:设改变方向的点为M,过M作x轴的垂线,垂足为N,根据速度和时间求出|OM|+|PM|的长,在△OPM中然后根据三角形的两边之和大于第三边列出一个不等式,然后在△OMN中,根据两边之和大于第三边列出另外一个不等式,然后再根据x大于等于0,y大于等于0,在平面直角坐标系中画出相应的平面区域为一个弓形,如图所示,利用四分之一圆的面积减去等腰直角三角形的面积即可求出弓形的面积.
解答:
依题意|OM|+|MP|=10×2=20米,
△OPM中,|OM|+|MP|≥|OP|(当O、M、P共线时“=”成立),
∴|OP|≤20,即x2+y2≤400,
又△OMN中,|OM|≤|ON|+|MN|(当O、M、N共线时“=”成立),
∴|OM|+|MP|≤|ON|+|MN|+|MP|=x+y,
∴x+y≥20
∴区域S:
则面积为
故选B.
点评:此题考查学生会进行简单的线性规划,考查了数形结合的数学思想,是一道综合题.
练习册系列答案
相关题目
| π |
| 2 |
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|