题目内容
【题目】设定义在(0,+∞)上的函数 f(x),对于任意正实数 a、b,都有 f(ab)=f(a)+f(b)﹣1,f(2)=0,且当 x>1 时,f(x)<1.
(1)求 f(1)及
的值;
(2)求证:f(x)在(0,+∞)上是减函数.
【答案】(1)f(
)=2;(2)见解析
【解析】
(1)可令a=b=1,解得f(1)=1,再根据f(2×
)=f(2)+f(
)求解f(
)即可
(2)可设0<x1<x2,可得
>1,将f(x2)表示成f(x1
),再结合f(ab)=f(a)+f(b)﹣1的性质进行判断即可
(1)令a=b=1得f(1)=f(1)+f(1)﹣1,得f(1)=1,∵f(2)=0,
∴f(2×
)=f(2)+f(
)﹣1=f(1),
则0+f(
)﹣1=1,得f(
)=2;
(2)证明:设0<x1<x2,可得
>1,可得f(
)<1,
由f(x2)=f(x1
)=f(x1)+f(
)﹣1<f(x1),
可得函数f(x)在(0,+∞)上是减函数.
练习册系列答案
相关题目