题目内容
设等差数列{an},{bn}前n项和Sn,Tn满足
=
,且
+
=
,S2=6;函数g(x)=
(x-1),且cn=g(cn-1)(n∈N,n>1),c1=1.
(1)求A;
(2)求数列{an}及{cn}的通项公式;
(3)若dn=
,试求d1+d2+…+dn.
| Sn |
| Tn |
| An+1 |
| 2n+7 |
| a3 |
| b4+b6 |
| a7 |
| b2+b8 |
| 2 |
| 5 |
| 1 |
| 2 |
(1)求A;
(2)求数列{an}及{cn}的通项公式;
(3)若dn=
|
(1)∵{an},{bn}是等差数列,
由
+
=
,得
+
=
=
=
,
而
=
=
=
,
∴
=
,解得A=1;
(2)令Sn=kn(n+1),∵S2=6,得6k=6,k=1,即Sn=n2+n.
当n=1时,a1=S1=2,当n≥2时,an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,
该式对n=1时成立,所以an=2n;
由题意cn=
(cn-1-1),变形得cn+1=
(cn-1+1)(n≥2),
∴数列{cn+1}是
为公比,以c1+1=2为首项的等比数列.
cn+1=2•(
)n-1,即cn=(
)n-2-1;
(3)当n=2k+1时,d1+d2+…+dn=(a1+a3+…a2k+1)+(c2+c4+…+c2k)
=[2+6+10+…+2(2k+1)]+[(1-1)+(
-1)+…+(
-1)]
=2(k+1)2+
[1-(
)k]-k=2k2+3k+2+
[1-(
)k]
=
+
[1-(
)n-1].
当n=2k时,d1+d2+…+dn=(a1+a3+…a2k-1)+(c2+c4+…+c2k)
=[2+6+10+…+2(2k-1)]+[(1-1)+(
-1)+…+(
-1)]
=2k2-k+
[1-(
)k]=
+
[1-(
)n].
综上:d1+d2+…dn=
.
由
| a3 |
| b4+b6 |
| a7 |
| b2+b8 |
| 2 |
| 5 |
| a3 |
| 2b5 |
| a7 |
| 2b5 |
| 2a5 |
| 2b5 |
| a5 |
| b5 |
| 2 |
| 5 |
而
| S9 |
| T9 |
| ||
|
| a5 |
| b5 |
| 2 |
| 5 |
∴
| 9A+1 |
| 2×9+7 |
| 2 |
| 5 |
(2)令Sn=kn(n+1),∵S2=6,得6k=6,k=1,即Sn=n2+n.
当n=1时,a1=S1=2,当n≥2时,an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,
该式对n=1时成立,所以an=2n;
由题意cn=
| 1 |
| 2 |
| 1 |
| 2 |
∴数列{cn+1}是
| 1 |
| 2 |
cn+1=2•(
| 1 |
| 2 |
| 1 |
| 2 |
(3)当n=2k+1时,d1+d2+…+dn=(a1+a3+…a2k+1)+(c2+c4+…+c2k)
=[2+6+10+…+2(2k+1)]+[(1-1)+(
| 1 |
| 22 |
| 1 |
| 22k-2 |
=2(k+1)2+
| 4 |
| 3 |
| 1 |
| 4 |
| 4 |
| 3 |
| 1 |
| 4 |
=
| n2+n+2 |
| 2 |
| 4 |
| 3 |
| 1 |
| 2 |
当n=2k时,d1+d2+…+dn=(a1+a3+…a2k-1)+(c2+c4+…+c2k)
=[2+6+10+…+2(2k-1)]+[(1-1)+(
| 1 |
| 22 |
| 1 |
| 22k-2 |
=2k2-k+
| 4 |
| 3 |
| 1 |
| 4 |
| n2-n |
| 2 |
| 4 |
| 3 |
| 1 |
| 2 |
综上:d1+d2+…dn=
|
练习册系列答案
相关题目