题目内容
设函数f(x)=logax(a>0,a≠1),f(x1x2x3…x10)=30 (x1,x2,…x1全为正数),则f(
)+f(
)+f(
)+…+f(
)的值等于
| x1 |
| x2 |
| x3 |
| x10 |
15
15
.分析:由f(x1x2x3…x10)=30,得loga(x1x2…x10)=30,f(
)+f(
)+f(
)+…+f(
)
=loga
+loga
+…+loga
,利用对数运算性质可得答案.
| x1 |
| x2 |
| x3 |
| x10 |
=loga
| x1 |
| x2 |
| x10 |
解答:解:f(x1x2x3…x10)=30,即loga(x1x2…x10)=30,
f(
)+f(
)+f(
)+…+f(
)
=loga
+loga
+…+loga
=
logax1+
logax2+…+
logax10
=
loga(x1x2…x10)=
×30=15.
故答案为:15.
f(
| x1 |
| x2 |
| x3 |
| x10 |
=loga
| x1 |
| x2 |
| x10 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:15.
点评:本题考查对数的运算性质,属基础题,熟记相关公式是解决问题的关键.
练习册系列答案
相关题目