题目内容
已知不等式
+
+…+
>
[log2n],其中n为大于2的整数,[log2n]表示不超过log2n的最大整数.设数列{an}的各项为正,且满足a1=b(b>0),an≤
,n=2,3,4,…
(Ⅰ)证明an<
,n=3,4,5,…
(Ⅱ)试确定一个正整数N,使得当n>N时,对任意b>0,都有an<
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 2 |
| nan-1 |
| n+an-1 |
(Ⅰ)证明an<
| 2b |
| 2+b[log2n] |
(Ⅱ)试确定一个正整数N,使得当n>N时,对任意b>0,都有an<
| 1 |
| 5 |
分析:(Ⅰ)当n≥2时,0<an≤
,可得
-
≥
,于是有n取2,3,…所有不等式两边相加,即可得到
-
>
[log2n],利用a1=b,即可得到结论;
(Ⅱ)an<
<
,令
<
,由此可得结论.
| nan-1 |
| n+an-1 |
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| n |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| 2 |
(Ⅱ)an<
| 2b |
| 2+b[log2n] |
| 2 |
| [log2n] |
| 2 |
| [log2n] |
| 1 |
| 5 |
解答:(Ⅰ)证明:当n≥2时,0<an≤
,∴
≥
+
即
-
≥
,于是有
-
≥
,
-
≥
,…,
-
≥
.
所有不等式两边相加可得
-
≥
+
+…+
.
由已知不等式知,当n≥3时有
-
>
[log2n].
∵a1=b,∴
>
+
[log2n],
∴an<
,n=3,4,5,…
(Ⅱ)解:an<
<
,令
<
则有log2n≥[log2n]>10,⇒n>210=1024,
故取N=1024,可使当n>N时,都有an<
.
| nan-1 |
| n+an-1 |
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| n |
即
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| n |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| a3 |
| 1 |
| a2 |
| 1 |
| 3 |
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| n |
所有不等式两边相加可得
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
由已知不等式知,当n≥3时有
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| 2 |
∵a1=b,∴
| 1 |
| an |
| 1 |
| b |
| 1 |
| 2 |
∴an<
| 2b |
| 2+b[log2n] |
(Ⅱ)解:an<
| 2b |
| 2+b[log2n] |
| 2 |
| [log2n] |
| 2 |
| [log2n] |
| 1 |
| 5 |
则有log2n≥[log2n]>10,⇒n>210=1024,
故取N=1024,可使当n>N时,都有an<
| 1 |
| 5 |
点评:本题考查新定义,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目