题目内容

已知A为锐角,sinA=
3
5
,tan(A-B)=-
1
2
,求cos2A及tanB的值.
cos2A=1-2sin2A=1-
9
25
×2=
7
25

∵A为锐角,sinA=
3
5

∴tanA=
sinA
1-sin2A
=
3
4

∴tanB=tan[A-(A-B)]=
tanA-tan(A-B)
1+tanAtan(A-B)
=
3
4
+
1
2
1-
3
4
×
1
2
=2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网