题目内容
1.若实数x、y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{x≤1}\end{array}\right.$,则log2(2x+y)的最大值为2.分析 画出满足约束条件的可行域,先求出真数的最大值,进而可得答案.
解答
解:满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{x≤1}\end{array}\right.$,的可行域如下图所示:
令U=2x+y,由$\left\{\begin{array}{l}{x=1}\\{x-y+1=0}\end{array}\right.$,可得A(1,2),直线U=2x+y经过A时,U=2x+y取得最大值:4;
此时z=log2(2x+y)的最大值为log24=2,
故答案为:2.
点评 本题考查的知识点是线性规划,对数函数的单调性,是对数函数与线性规划的综合考查,难度中档.
练习册系列答案
相关题目
8.设全集U={-2,-1,0,1,2,3},A={2,3},B={-1,0},则A∩(∁UB)=( )
| A. | {0,2,3} | B. | {-2,1,2,3} | C. | {-1,0,2,3} | D. | {2,3} |
12.数列1,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…,$\frac{1}{1+2+3+…+n}$的前n项和为$\frac{9}{5}$,则正整数n的值为( )
| A. | 6 | B. | 8 | C. | 9 | D. | 10 |
9.根据如图的程序框图,当输入x为2017时,输出的y为28,则判断框中的条件可以是( )

| A. | x≥0? | B. | x≥1? | C. | x≥-1? | D. | x≥-3? |
16.
如图,在正方体ABCD-A1B1C1D1中,棱AB的中点为P,若光线从点P出发,依次经三个侧面BCC1B1,DCC1D1,ADD1A1反射后,落到侧面ABB1A1(不包括边界),则入射光线PQ与侧面BCC1B1所成角的正切值的范围是( )
| A. | ($\frac{3}{4}$,$\frac{5}{4}$) | B. | ($\frac{2\sqrt{17}}{17}$,4) | C. | ($\frac{\sqrt{5}}{5}$,$\frac{3}{2}$) | D. | ($\frac{3\sqrt{5}}{10}$,$\frac{5}{4}$) |
13.理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:
规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:
| 学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 物理成绩 | 65 | 70 | 75 | 81 | 85 | 87 | 93 |
| 化学成绩 | 72 | 68 | 80 | 85 | 90 | 86 | 91 |
10.某项科研活动共进行了5次试验,其数据如表所示:
(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;
(Ⅱ)求特征量y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;并预测当特征量x为570时特征量y的值.
(附:回归直线的斜率和截距的最小二乘法估计公式分别为$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
| 特征量 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
| x | 555 | 559 | 551 | 563 | 552 |
| y | 601 | 605 | 597 | 599 | 598 |
(Ⅱ)求特征量y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;并预测当特征量x为570时特征量y的值.
(附:回归直线的斜率和截距的最小二乘法估计公式分别为$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
11.设抛物线K:x2=2py(p>0),焦点为F,P是K上一点,K在点P处的切线为l,d为F到l的距离,则( )
| A. | $\frac{d}{|PF|}$=p | B. | $\frac{d}{|PF{|}^{2}}$=p | C. | $\frac{d}{|PF|}$=2p | D. | $\frac{{d}^{2}}{|PF|}$=$\frac{p}{2}$ |