题目内容

已知向量
a
=(sinx,-1),
b
=(
3
cosx,-
1
2
),函数f(x)=(
a
+
b
)•
a
-2
(1)求函数f(x)的最小正周期T及单调减区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2
3
,c=4,且f(A)=1.求A,b和△ABC的面积.
分析:(1)由已知利用向量的运算及数量积即可得到(
a
+
b
)•
a
,进而得到f(x),利用正弦函数周期公式及其单调性即可得到函数f(x)的最小正周期T及单调减区间;
(2)利用(1)即可得到A,再利用正弦定理即可得到C,利用三角形内角和定理即可得到B,利用直角三角形含30°角的性质即可得出边b,进而得到三角形的面积S=
1
2
ab
解答:解析:(1)∵
a
=(sinx,-1)
b
=(
3
cosx,-
1
2
)

∴(
a
+
b
a
=(sinx+
3
cosx,-
3
2
)
•(sinx,-1)
=sin2x+
3
sinxcosx+
3
2

=
1-cos2x
2
+
3
sin2x
2
+
3
2

=sin(2x-
π
6
)
+2,
f(x)=(
a
+
b
)•
a
-2
=sin(2x-
π
6
)

T=
2

π
2
+2kπ≤2x-
π
6
2
+2kπ

解得kπ+
π
3
≤x≤kπ+
6
(k∈Z)

∴单调递减区间是[kπ+
π
3
,kπ+
6
](k∈Z)

(2)∵f(A)=1,∴sin(2A-
π
6
)=1

∵A为锐角,∴2A-
π
6
=
π
2
,解得A=
π
3

由正弦定理得
a
sinA
=
c
sinC

sinC=
4×sin
π
3
4
3
=sinC=
4sin
π
3
2
3
=1,C∈(0,π),∴C=
π
2

B=π-A-C=
π
6
,∴b=
1
2
c
=2.
S△ABC=
1
2
×2×2
3
=2
3
点评:本题综合考查了向量的运算及数量积运算、正弦函数的单调性及其性质、正弦定理、直角三角形的边角关系及其面积等基础知识与基本技能,考查了推理能力和计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网