题目内容
【题目】已知函数:![]()
(I)当
时,求
的最小值;
(II)对于任意的
都存在唯一的
使得
,求实数a的取值范围.
【答案】(I)答案不唯一,见解析(II)![]()
【解析】
(I)求导后,通过对
的讨论,得到函数的单调性,根据单调性可得最小值;
(II)对于任意的
都存在唯一的
使得
,得![]()
的值域是
的值域的子集,求出两个函数的值域后列式可求得.,注意
的唯一性满足
解:(I)![]()
时,
递增,
,
时,
递减,![]()
时,
时
递减,
时
递增,
所以![]()
综上,当
;
当![]()
当
(II)因为对于任意的
都存在唯一的
使得
成立,
所以![]()
的值域是
的值域的子集.
因为![]()
递增,
的值域为
(i)当
时,
在
上单调递增,
又
,
所以
在[1,e]上的值域为
,
所以![]()
即![]()
(ii)当
时,因为
时,
递减,
时,
递增,且
,
所以只需![]()
即
,所以
(iii)当
时,因为
在
上单调递减,且
,
所以不合题意.
综合以上,实数
的取值范围是
.
练习册系列答案
相关题目
【题目】某花店每天以每枝
元的价格从农场购进若干枝玫瑰花,然后以每枝
元价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进
枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式;
(2)花店记录了
天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 |
|
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
|
以
天的各需求量的频率作为各需求量发生的概率.
若花店一天购进
枝玫瑰花,
表示当天的利润(单位:元),求
的分布列, 数学期望及方差;
若花店一天购进
枝或
枝玫瑰花,你认为应购进
枝还是
枝?请说明理由.