题目内容
已知z1,z2为复数,(3+i)z1为实数,z2=
且|z2|=5
,则z2=
| z1 |
| 2+i |
| 2 |
±(5-5i)
±(5-5i)
.分析:设出复数z1,根据复数是一个实数,得到实部和虚部之间的关系,根据z2的关系,得到复数的表示形式,再根据复数的模长求出结果.
解答:解:设z1=a+bi,
∵(3+i)z1为实数,
∴(3+i)(a+bi)=3a-b+(a+3b)i
∴a+3b=0,
∴z1=a+bi=-3b+bi
∵z2=
=
=
=
=-b+bi
∵|z2|=5
,
∴
=5
,
∴b=±5,
∴z2=±(5-5i)
故答案为:±(5-5i)
∵(3+i)z1为实数,
∴(3+i)(a+bi)=3a-b+(a+3b)i
∴a+3b=0,
∴z1=a+bi=-3b+bi
∵z2=
| z1 |
| 2+i |
| -3b+bi |
| 2+i |
| (-3b+bi)(2-i) |
| (2+i)(2-i) |
| -5b+5bi |
| 5 |
∵|z2|=5
| 2 |
∴
| 2b2 |
| 2 |
∴b=±5,
∴z2=±(5-5i)
故答案为:±(5-5i)
点评:本题考查复数的求法,考查复数的混合运算和模长的公式,本题解题的关键是看出两个复数之间的关系,本题是一个中档题目.
练习册系列答案
相关题目