题目内容
O是△ABC所在平面上的一点,且满足:|
|=|
|=|
|,若BC=1,BA=
,则
•
=( )
| OA |
| OB |
| OC |
| 3 |
| 2 |
| BO |
| AC |
分析:根据|
|=|
|=|
|可知点O为三角形ABC的外心则OD⊥AC,从而
•
=(
+
)•
=
•
,将
,
用
与
表示,即可求出所求.
| OA |
| OB |
| OC |
| BO |
| AC |
| BD |
| DO |
| AC |
| BD |
| AC |
| BD |
| AC |
| BC |
| BA |
解答:解:
∵|
|=|
|=|
|,
∴点O为三角形ABC的外心则OD⊥AC
•
=(
+
)•
=
•
而
=
(
+
),
=
-
∴
•
=
•
=
(
+
)(
-
)
=
(
2-
2)=
(1-
)=-
故选D.
| OA |
| OB |
| OC |
∴点O为三角形ABC的外心则OD⊥AC
| BO |
| AC |
| BD |
| DO |
| AC |
| BD |
| AC |
而
| BD |
| 1 |
| 2 |
| BA |
| BC |
| AC |
| BC |
| BA |
∴
| BO |
| AC |
| BD |
| AC |
| 1 |
| 2 |
| BA |
| BC |
| BC |
| BA |
=
| 1 |
| 2 |
| BC |
| BA |
| 1 |
| 2 |
| 9 |
| 4 |
| 5 |
| 8 |
故选D.
点评:本题主要考查了平面向量数量积的运算,同时考查了转化的思想和运算求解的能力,属于中档题.
练习册系列答案
相关题目
已知:O是△ABC所在平面上的一点且满足:
+
(
-
)+
(
-
)=
,则点O在( )
| OA |
| sinA |
| sinA+sinB |
| OB |
| OA |
| sinB |
| sinB+sinA |
| OC |
| OA |
| 0 |
| A、AB边上 | B、AC边上 |
| C、BC边上 | D、△ABC内心 |