题目内容

精英家教网在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.
分析:先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.
解答:解:在△ADC中,AD=10,AC=14,DC=6,
由余弦定理得cos∠ADC=
AD2+DC2-AC2
2AD•DC
=
100+36-196
2×10×6
=-
1
2

∴∠ADC=120°,∠ADB=60°
在△ABD中,AD=10,∠B=45°,∠ADB=60°,
由正弦定理得
AB
sin∠ADB
=
AD
sinB

∴AB=
AD•sin∠ADB
sinB
=
10sin60°
sin45°
=
10×
3
2
2
2
=5
6
点评:本题主要考查余弦定理和正弦定理的应用.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网