ÌâÄ¿ÄÚÈÝ
£¨1£©ÇóÖ¤£ºAB¡ÍPQ£»
£¨2£©ÔÚµ×±ßACÉÏÓÐÒ»µãM£¬Âú×ãAM£»MC=3£º4£¬ÇóÖ¤£ºBM¡ÎÆ½ÃæAPQ£®
£¨3£©ÇóÖ±ÏßBCÓëÆ½ÃæAPQËù³É½ÇµÄÕýÏÒÖµ£®
·ÖÎö£º£¨1£©ÓÉAB¡ÍBC£®AB¡ÍBB1£¬µÃAB¡ÍÆ½ÃæBC1£¬Ò×µÃAB¡ÍPQ£»
£¨2£©¹ýM×÷MN¡ÎCQ½»AQÓÚN£¬Á¬½ÓPN£¬ÓÉPB¡ÎCQµÃMN¡ÎPB£¬´Ó¶øËıßÐÎPBMNΪƽÐÐËıßÐΣ¬¶Ô±ßƽÐÐBM¡ÎPN£¬ÓÉÏßÃæÆ½ÐеÄÅж¨¶¨ÀíµÃBM¡ÎÆ½ÃæAPQ£»
£¨3£©ÏÈÇóµÃ¸÷µãµÄ×ø±ê£¬´Ó¶øµÃ³öÏàÓ¦ÏòÁ¿µÄ×ø±ê£¬ÔÙÇó³öÆ½ÃæAPQµÄ·¨ÏòÁ¿£¬ÓÉÏßÃæ½Ç¹«Ê½Çó½â£®
£¨2£©¹ýM×÷MN¡ÎCQ½»AQÓÚN£¬Á¬½ÓPN£¬ÓÉPB¡ÎCQµÃMN¡ÎPB£¬´Ó¶øËıßÐÎPBMNΪƽÐÐËıßÐΣ¬¶Ô±ßƽÐÐBM¡ÎPN£¬ÓÉÏßÃæÆ½ÐеÄÅж¨¶¨ÀíµÃBM¡ÎÆ½ÃæAPQ£»
£¨3£©ÏÈÇóµÃ¸÷µãµÄ×ø±ê£¬´Ó¶øµÃ³öÏàÓ¦ÏòÁ¿µÄ×ø±ê£¬ÔÙÇó³öÆ½ÃæAPQµÄ·¨ÏòÁ¿£¬ÓÉÏßÃæ½Ç¹«Ê½Çó½â£®
½â´ð£º
½â£ºÖ¤Ã÷£º£¨1£©Ö¤Ã÷£ºÒòΪAB=3£¬BC=4£¬
ËùÒÔAC=5£¬´Ó¶øAC2=AB2+BC2£¬
¼´AB¡ÍBC£®£¨2·Ö£©
ÓÖÒòΪAB¡ÍBB1£¬¶øBC¡ÉBB1=B£¬
ËùÒÔAB¡ÍÆ½ÃæBC1£¬ÓÖPQ?Æ½ÃæBC1
ËùÒÔAB¡ÍPQ£»£¨4·Ö£©
£¨2£©½â£º¹ýM×÷MN¡ÎCQ½»AQÓÚN£¬Á¬½ÓPN£¬
ÒòΪAM£ºMC=3£º4¡àAM£ºAC=MN£ºCQ=3£º7£¨6·Ö£©
¡àMN=PB=3£¬¡ßPB¡ÎCQ¡àMN¡ÎPB£¬¡àËıßÐÎPBMNΪƽÐÐËıßÐΡàBM¡ÎPN£¬ËùÒÔBM¡ÎÆ½ÃæAPQ£¨8·Ö£©
£¨3£©½â£ºÓÉͼ1Öª£¬PB=AB=3£¬QC=7£¬·Ö±ðÒÔBA£¬BC£¬BB1Ϊx£¬y£¬zÖᣬ
ÔòA£¨3£¬0£¬0£©£¬C£¨0£¬4£¬0£©£¬P£¨0£¬0£¬3£©£¬Q£¨0£¬4£¬7£©
=(0£¬4£¬0)£¬
=(-3£¬0£¬3)£¬
=(-3£¬4£¬7)£¨10·Ö£©
ÉèÆ½ÃæAPQµÄ·¨ÏòÁ¿Îª
=(a£¬b£¬c)£¬
ËùÒÔ
µÃ
£¬
Áîa=1£¬Ôòc=1£¬b=-1£¬cos£¼
£¬
£¾=
=
=-
ËùÒÔÖ±ÏßBCÓëÆ½ÃæAPQËù³É½ÇµÄÕýÏÒֵΪ
£¨12·Ö£©
£¨×¢£©ÓÃÆäËû½â·¨¿ÉÏàÓ¦¸ø·Ö£®
ËùÒÔAC=5£¬´Ó¶øAC2=AB2+BC2£¬
¼´AB¡ÍBC£®£¨2·Ö£©
ÓÖÒòΪAB¡ÍBB1£¬¶øBC¡ÉBB1=B£¬
ËùÒÔAB¡ÍÆ½ÃæBC1£¬ÓÖPQ?Æ½ÃæBC1
ËùÒÔAB¡ÍPQ£»£¨4·Ö£©
£¨2£©½â£º¹ýM×÷MN¡ÎCQ½»AQÓÚN£¬Á¬½ÓPN£¬
ÒòΪAM£ºMC=3£º4¡àAM£ºAC=MN£ºCQ=3£º7£¨6·Ö£©
¡àMN=PB=3£¬¡ßPB¡ÎCQ¡àMN¡ÎPB£¬¡àËıßÐÎPBMNΪƽÐÐËıßÐΡàBM¡ÎPN£¬ËùÒÔBM¡ÎÆ½ÃæAPQ£¨8·Ö£©
£¨3£©½â£ºÓÉͼ1Öª£¬PB=AB=3£¬QC=7£¬·Ö±ðÒÔBA£¬BC£¬BB1Ϊx£¬y£¬zÖᣬ
ÔòA£¨3£¬0£¬0£©£¬C£¨0£¬4£¬0£©£¬P£¨0£¬0£¬3£©£¬Q£¨0£¬4£¬7£©
| BC |
| AP |
| AQ |
ÉèÆ½ÃæAPQµÄ·¨ÏòÁ¿Îª
| n |
ËùÒÔ
|
|
Áîa=1£¬Ôòc=1£¬b=-1£¬cos£¼
| BC |
| n |
| ||||
|
|
| -4 | ||
4¡Á
|
| ||
| 3 |
ËùÒÔÖ±ÏßBCÓëÆ½ÃæAPQËù³É½ÇµÄÕýÏÒֵΪ
| ||
| 3 |
£¨×¢£©ÓÃÆäËû½â·¨¿ÉÏàÓ¦¸ø·Ö£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÏßÓëÏߣ¬ÏßÓëÃæ£¬ÃæÓëÃæµÄλÖùØÏµºÍÏßÃæÆ½ÐкÍÏßÃæ´¹Ö±µÄÅж¨¶¨Àí¼°¿Õ¼äÏòÁ¿µÄÓ¦Óã¬ÅàÑøÑ§Éúת»¯µÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿