题目内容

精英家教网如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过点A(-2,-4),O(0,0),B(2,0).
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.
分析:(1)分别将A,B,O的坐标代入,通过方程组求a,b,c.
(2)利用二次函数的图象和性质,结合对称轴的性质,求AM+OM的最小值.
解答:解:(1)把A(-2,-4),O(0,0),B(2,0)代入y=ax2+bx+c中,
4a-2b+c=-4
4a+2b+c=0
c=0
,解得a=-
1
2
,b=1,c=0,
所以解析式为y=-
1
2
x2+x.
(2)由y=-
1
2
x2+x=-
1
2
(x-1)2+
1
2
,可得抛物线的对称轴为x=1,并且对称轴垂直平分线段OB,
∴OM=BM,
∴OM+AM=BM+AM,
连接AB交直线x=1于M点,则此时OM+AM最小,精英家教网
过点A作AN⊥x轴于点N,
在Rt△ABN中,AB=
AN2+BN2
=
42+42
=4
2

因此OM+AM最小值为4
2
点评:本题主要考查二次函数的图象和性质,利用配方法是解决二次函数的基本方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网