题目内容
已知函数
(
).
(1)当
时,求
的图象在
处的切线方程;
(2)若函数
在
上有两个零点,求实数
的取值范围;
(3)若函数
的图象与
轴有两个不同的交点
,且
,求证:
(其中
是
的导函数).
(1)当
(2)若函数
(3)若函数
(1)
;(2)
;(3)证明见解析.
试题分析:解题思路:(1)利用导数的几何意义求解即可;(2)利用该区间上的极值的正负判断函数零点的个数;(3)通过构造函数求最值进行证明.规律总结:利用导数研究函数的性质是常见题型,主要是通过导数研究函数的单调性、求单调区间、求极值、最值以及不等式恒成立等问题,往往计算量较大,思维量大,要求学生有较高的逻辑推理能力.
试题解析:(1)当
切线的斜率
(2)
因
所以
又
解得
(3)因为
所以方程
下证
因为
所以
所以
故(*)式成立,即
练习册系列答案
相关题目