题目内容
设数列{an}的各项都是正数,记Sn为数列{an}的前n项和,且对任意n∈N+,都有(Ⅰ)求证:
=2Sn-an;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若bn=3n+(-1)n-1λ·
(λ为非零常数,n∈N+),问是否存在整数λ,使得对任意n∈N+,都有bn+l>bn.
答案:(1)证明:在已知式中,当n=1时,
∵a1>0 ∴a1=1
当n≥2时
+
+
+…+
①
+
+
+…+
②
①-②得,
=an(2a1+2a2+…+2an-1+an)∵an>0 ∴
=2a1+2a2+…+2an-1+an
即
=2Sn-an∵a1=1适合上式∴
=2Sn-an(n
N+)
(Ⅱ)解:由(Ⅰ)知
=2Sn-an(n
N+)③当n≥2时,
=2Sn-1-an-1④
③-④得
=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1∵an+an-1>0 ∴an-an-1=1
数列<{an}是等差数列,首项为1,公差为1,可得an=n
(Ⅲ)解:∵an=n∴bn=3n+(-1)n-1λ·
=3n+(-1)n-1λ·2n
欲使bn+1-bn=[3n+1+(1-)nλ·2n+1]-[3n+(-1)n-1λ·2n]=2·3n-3λ(-1)n-1·2n>0
即(-1)n-1·λ<(
)n-1成立⑤当n=2k-1,k=1,2,3…都成立,∴λ<1
⑤式即为λ<-(
)2k-1⑥依题意,⑦式对k=1,2,3…都成立λ>
∴
<λ<1,又λ≠0
∴存在整数λ=-1,使得对任意n
N+,都有bn+1>bn.
练习册系列答案
相关题目