题目内容
已知数列{an}各项均为正数,前n项和Sn满足Sn=
+
an-3,(n∈N*),数列{bn}满足:点列An(n,bn)在直线2x-y+1=0
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)记Tn为数列{cn}的前n项和,且cn=bn•2an-2,求Tn;
(Ⅲ)若对任意的n∈N*不等式
-
≤0恒成立,求正实数a的取值范围.
| 1 |
| 2 |
| a | 2n |
| 1 |
| 2 |
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)记Tn为数列{cn}的前n项和,且cn=bn•2an-2,求Tn;
(Ⅲ)若对任意的n∈N*不等式
| an+1 | ||||||
(1+
|
| an | ||
|
(Ⅰ)由已知Sn=
+
an-3,
∴2Sn=
+an-6(1)
当n≥2时,2Sn-1=
+an-1-6(2)
两式相减整理得:(an+an-1)(an-an-1-1)=0,----(2分)
注意到an>0,∴an-an-1-1=0,∴an=n+2,
又当n=1时,a1=S1,解得a1=3适合,∴an=n+2,----(3分)
点An(n,bn)在直线l:y=2x+1上,∴bn=2n+1.----(4分)
(Ⅱ)∵Cn=bn•2an-2=(2n+1)•2n,
∴Tn=c1+c2+…+cn=3•2+5•22+7•23+…+(2n+1)•2n
∴2Tn=3•22+5•23+7•24+…+(2n+1)•2n+1,
错位相减得Tn=(2n-1)•2n+1+2.----(8分)
(Ⅲ)∵对任意的n∈N*不等式
-
≤0恒成立,
由a>0,即a≤
(1+
)(1+
)(1+
)…(1+
),---(9分)
令f(n)=
(1+
)(1+
)(1+
)…(1+
),--(10分)
∴f(n+1)=
(1+
)(1+
)(1+
)…(1+
)•(1+
),
∴f(n+1)>f(n),f(n)单调递增,----(12分)
f(n)min=f(1)=
.∴0<a≤
.----(14分)
| 1 |
| 2 |
| a | 2n |
| 1 |
| 2 |
∴2Sn=
| a | 2n |
当n≥2时,2Sn-1=
| a | 2n-1 |
两式相减整理得:(an+an-1)(an-an-1-1)=0,----(2分)
注意到an>0,∴an-an-1-1=0,∴an=n+2,
又当n=1时,a1=S1,解得a1=3适合,∴an=n+2,----(3分)
点An(n,bn)在直线l:y=2x+1上,∴bn=2n+1.----(4分)
(Ⅱ)∵Cn=bn•2an-2=(2n+1)•2n,
∴Tn=c1+c2+…+cn=3•2+5•22+7•23+…+(2n+1)•2n
∴2Tn=3•22+5•23+7•24+…+(2n+1)•2n+1,
错位相减得Tn=(2n-1)•2n+1+2.----(8分)
(Ⅲ)∵对任意的n∈N*不等式
| an+1 | ||||||
(1+
|
| an | ||
|
由a>0,即a≤
| 1 | ||
|
| 1 |
| b1+1 |
| 1 |
| b2+1 |
| 1 |
| b3+1 |
| 1 |
| bn+1 |
令f(n)=
| 1 | ||
|
| 1 |
| b1+1 |
| 1 |
| b2+1 |
| 1 |
| b3+1 |
| 1 |
| bn+1 |
∴f(n+1)=
| 1 | ||
|
| 1 |
| b1+1 |
| 1 |
| b2+1 |
| 1 |
| b3+1 |
| 1 |
| bn+1 |
| 1 |
| bn+1+1 |
∴f(n+1)>f(n),f(n)单调递增,----(12分)
f(n)min=f(1)=
5
| ||
| 24 |
5
| ||
| 24 |
练习册系列答案
相关题目