题目内容

已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,高AA1=2,求:
(1)直线AC1与平面AA1B1B所成角的大小;
(2)二面角B-AC1-D的大小;
(3)四面体ABDC1的体积.
分析:(1)连接AB1,由正四棱柱ABCD-A1B1C1D1,知B1C1⊥平面ABB1A1,AB1是AC1在平面AA1B1B上的射影,故∠C1AB1就是AC1与平面AA1B1B所成的角,由此能求出直线AC1与平面AA1B1B所成的角.
(2)过B作BE⊥AC,垂足为E,连接ED,由△ABC1≌△ADC1,知∠BAC1=∠DAC1,由AB=AD,∠BAC1=∠DAC1,AE=AE,知△ABE≌△ADE,由此能求出二面角B-AC1-D的大小.
(3)VABDC1=VC1-ABD=
1
3
S△ABD•CC1
,由此能求出四面体ABDC1的体积.
解答:解:(1)连接AB1,∵正四棱柱ABCD-A1B1C1D1
∴B1C1⊥平面ABB1A1,AB1是AC1在平面AA1B1B上的射影,
∴∠C1AB1就是AC1与平面AA1B1B所成的角,
在△C1AB1中,tan∠C1AB1=
1
5

C1AB1=arctan
5
5

∴直线AC1与平面AA1B1B所成的角为arctan
5
5

(2)过B作BE⊥AC,垂足为E,连接ED,
∵△ABC1≌△ADC1,∴∠BAC1=∠DAC1
∵AB=AD,∠BAC1=∠DAC1,AE=AE
∴△ABE≌△ADE,
∠AEB=∠AED=
π
2

∴∠BED是二面角B-AC1-D的平面角,
在△BED中,BE=ED=
30
6
BD=
2
cos∠BED=-
1
5

∠BED=π-arccos
1
5

∴二面角B-AC1-D的大小为π-arccos
1
5

(3)VABDC1=VC1-ABD=
1
3
S△ABD•CC1
=
1
3
×
1
2
×1×1×2=
1
3
点评:本题考查直线与平面所成角的大小的求法,考查二面角面积的求法,考查四面体体积的求法,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网