题目内容
已知x>0,则函数f(x)=2-3x-
的最大值是______.
| 4 |
| x |
∵函数 y=2-3x-
(x>0)
∴y=2-(3x+
)
由基本不等式得t=3x+
≥ 4
∴y=2-(3x+
)≤2-4
故函数 y=2-3x-
(x>0)的最大值是 2-4
故答案为:2-4
| 4 |
| x |
∴y=2-(3x+
| 4 |
| x |
由基本不等式得t=3x+
| 4 |
| x |
| 3 |
∴y=2-(3x+
| 4 |
| x |
| 3 |
故函数 y=2-3x-
| 4 |
| x |
| 3 |
故答案为:2-4
| 3 |
练习册系列答案
相关题目