题目内容
6.设集合M={α|α=45°+k•90°,k∈Z},N={α|α=90°+k•45°,k∈z},则集合M与N的关系是( )| A. | M∩N=∅ | B. | M?N | C. | N?M | D. | M=N |
分析 在集合N中,k=2n,或k=2n+1,n∈Z,能过说明M的元素都是集合N的元素,而集合N中存在元素不在集合M中,从而便得出M?N
解答 解:对于集合N,k=2n,或k=2n+1,n∈Z;
k=2n+1时,x=n•90°+45°+90°=(n+1)•90°+45°,n+1∈Z;
又M的元素x=k•90°+45°,k∈Z;
∴M的元素都是N的元素;
而k=2n时,x=k•90°+90°;
∴N中存在元素x∉M;
∴M?N.
故选:C.
点评 考查整数可以分成奇数和偶数,描述法表示集合,知道x=k•90°+45°,k∈Z,和x=(n+1)•90°+45°,n∈Z,表示的元素相同,真子集的概念及判断过程.
练习册系列答案
相关题目
20.已知a>b>0,椭圆C1的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,双曲线C2的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1,C1与C2的离心率之积为$\frac{{\sqrt{3}}}{2}$,则C1的离心率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{4}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
18.已知函数f(x)=$\left\{\begin{array}{l}1-{x^2}(x≤1)\\{x^2}+x-2(x>1)\end{array}$则$f[\frac{1}{f(2)}]$的值为( )
| A. | $\frac{15}{16}$ | B. | $\frac{8}{9}$ | C. | $-\frac{27}{16}$ | D. | 18 |