题目内容
(2011•乐山一模)已知数列{an}的前n项和Sn=n(n+2),数列{bn}的前n项和为Tn,且有
=1,b1=3.
(1)求数列{an},{bn}的通项an,bn;
(2)设cn=
,试判断数列{cn}的单调性,并证明你的结论.
(3)在(2)的前提下,设Mn是数列{cn}的前n项和,证明:Mn≥4-
.
| Tn+1-bn+1 |
| Tn+bn |
(1)求数列{an},{bn}的通项an,bn;
(2)设cn=
| an |
| bn |
(3)在(2)的前提下,设Mn是数列{cn}的前n项和,证明:Mn≥4-
| n+2 |
| 2n-1 |
分析:(1)根据当n≥2时,an=Sn-Sn-1,可求数列{an}的通项an,根据
=1,可得bn+1=2bn-1,从而{bn-1}是公比为2的等比数列,故可求数列{bn}的通项bn;
(2)cn=
=
,数列{cn}为递减数列,再用作差法证明即可;
(3)根据cn=
=
≥
=
,可得Mn=c1+c2+…+cn≥1+
+
+…+
,利用错位相消法,求出右边的和,即可证得结论.
| Tn+1-bn+1 |
| Tn+bn |
(2)cn=
| an |
| bn |
| 2n+1 |
| 2n+1 |
(3)根据cn=
| an |
| bn |
| 2n+1 |
| 2n+1 |
| 2n |
| 2n |
| n |
| 2n-1 |
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
解答:(1)解:∵Sn=n(n+2),
∴当n≥2时,an=Sn-Sn-1=2n+1
当n=1时,a1=S1=3满足上式
∴an=2n+1
∵
=1
∴Tn+1-Tn=2bn-1
∴bn+1=2bn-1
∴bn+1-1=2(bn-1)
∴{bn-1}是公比为2的等比数列
∴bn-1=(b1-1)•2n-1=2n
∴bn =2n+1
(2)解:cn=
=
,数列{cn}为递减数列
证明:∵cn+1-cn=
-
=
<0
∴数列{cn}为递减数列
(3)证明:∵cn=
=
≥
=
∴Mn=c1+c2+…+cn≥1+
+
+…+
令rn=1+
+
+…+
①
∴
rn=
+
+
+…+
②
①-②:
rn=1+
+
+
+…+
-
=2-
∴rn=4-
∴1+
+
+…+
=4-
∴Mn≥4-
∴当n≥2时,an=Sn-Sn-1=2n+1
当n=1时,a1=S1=3满足上式
∴an=2n+1
∵
| Tn+1-bn+1 |
| Tn+bn |
∴Tn+1-Tn=2bn-1
∴bn+1=2bn-1
∴bn+1-1=2(bn-1)
∴{bn-1}是公比为2的等比数列
∴bn-1=(b1-1)•2n-1=2n
∴bn =2n+1
(2)解:cn=
| an |
| bn |
| 2n+1 |
| 2n+1 |
证明:∵cn+1-cn=
| 2n+3 |
| 2n+1+1 |
| 2n+1 |
| 2n+1 |
=
| (1-2n)•2n+2 |
| (2n+1+1)(2n+1) |
∴数列{cn}为递减数列
(3)证明:∵cn=
| an |
| bn |
| 2n+1 |
| 2n+1 |
| 2n |
| 2n |
| n |
| 2n-1 |
∴Mn=c1+c2+…+cn≥1+
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
令rn=1+
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
①-②:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| n |
| 2n |
| n+2 |
| 2n |
∴rn=4-
| n+2 |
| 2n-1 |
∴1+
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
| n+2 |
| 2n-1 |
∴Mn≥4-
| n+2 |
| 2n-1 |
点评:本题以数列的和为载体,考查数列的通项,考查数列的单调性,考查不等式的证明,同时考查错位相减法求数列的和,综合性强.
练习册系列答案
相关题目